Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-884462.v1

ABSTRACT

Hyperinflammation is frequently observed in patients with severe COVID-19. Inadequate and defective IFN type I responses against SARS-CoV-2, associated with autoantibodies in a proportion of patients, lead to severe courses of disease. In addition, hyperactive responses of the humoral immune system have been described. In the current study we investigated a possible role of neutralizing autoantibodies against anti-inflammatory mediators. Plasma from adult patients with severe and critical COVID-19 was screened by ELISA for antibodies against PGRN, IL-1-Ra, IL-10, IL-18BP, IL-22BP, IL-36-Ra, CD40, IFN-α2, IFN-γ, IFN-ω and serpinB1. Autoantibodies were characterized and the antigens were analyzed for immunogenic alterations. In a discovery cohort with severe to critical COVID-19 high titers of PGRN-autoantibodies were detected in 11 of 30 (36.7%), and of IL-1-Ra-autoantibodies in 14 of 30 (46.7%) patients. In a validation cohort of 64 patients with critical COVID-19 high-titer PGRN-Abs were detected in 25 (39%) and IL-1-Ra-Abs in 32 of 64 patients (50%). PGRN-Abs and IL-1-Ra-Abs belonged to IgM and several IgG subclasses. In separate cohorts with non-critical COVID-19, PGRN-Abs and IL-1-Ra-Abs were detected in low frequency (i.e. in < 5% of patients) and at low titers. Neither PGRN- nor IL-1-Ra-Abs were found in 40 healthy controls vaccinated against SARS-CoV-2 or 188 unvaccinated healthy controls. PGRN-Abs were not cross-reactive against SARS-CoV-2 structural proteins nor against IL-1-Ra. Plasma levels of both free PGRN and free IL-1-Ra were significantly decreased in autoantibody-positive patients compared to Ab-negative and non-COVID-19 controls. In vitro PGRN-Abs from patients functionally reduced PGRN-dependent inhibition of TNF-α signaling, and IL-1-Ra-Abs from patients reduced IL-1-Ra- or anakinra-dependent inhibition of IL-1ß signaling. The pSer81 hyperphosphorylated PGRN isoform was exclusively detected in patients with high-titer PGRN-Abs; likewise, a hyperphosphorylated IL-1-Ra isoform was only found in patients with high-titer IL-1-Ra-Abs. Thr111 was identified as the hyperphophorylated amino acid of IL-1-Ra. In longitudinally collected samples hyperphosphorylated isoforms of both PGRN and IL-1-Ra emerged transiently, and preceded the appearance of autoantibodies. In hospitalized patients, the presence of IL-1-Ra-Abs or IL-1-Ra-Abs in combination with PGRN-Abs was associated with a higher morbidity and mortality.To conclude, neutralizing autoantibodies to IL-1-Ra and PGRN occur in a significant portion of patients with critical COVID-19, with a concomitant decrease in circulating free PGRN and IL-1-Ra, indicative of a misdirected, proinflammatory autoimmune response. The break of self-tolerance is likely caused by atypical hyperphosphorylated isoforms of both antigens, whose appearances precede autoantibody induction. Our data suggest that these immunogenic secondary modifications are induced by the SARS-CoV-2-infection itself or the inflammatory environment evoked by the infection and predispose for a critical course of COVID-19.


Subject(s)
COVID-19
2.
Frauke Degenhardt; David Ellinghaus; Simonas Juzenas; Jon Lerga-Jaso; Mareike Wendorff; Douglas Maya-Miles; Florian Uellendahl-Werth; Hesham ElAbd; Malte C. Ruehlemann; Jatin Arora; Onur oezer; Ole Bernt Lenning; Ronny Myhre; May Sissel Vadla; Eike Matthias Wacker; Lars Wienbrandt; Aaron Blandino Ortiz; Adolfo de Salazar; Adolfo Garrido Chercoles; Adriana Palom; Agustin Ruiz; Alberto Mantovani; Alberto Zanella; Aleksander Rygh Holten; Alena Mayer; Alessandra Bandera; Alessandro Cherubini; Alessandro Protti; Alessio Aghemo; Alessio Gerussi; Alexander Popov; Alfredo Ramirez; Alice Braun; Almut Nebel; Ana Barreira; Ana Lleo; Ana Teles; Anders Benjamin Kildal; Andrea Biondi; Andrea Ganna; Andrea Gori; Andreas Glueck; Andreas Lind; Anke Hinney; Anna Carreras Nolla; Anna Ludovica Fracanzani; Annalisa Cavallero; Anne Ma Dyrhol-Riise; Antonella Ruello; Antonio Julia; Antonio Muscatello; Antonio Pesenti; Antonio Voza; Ariadna Rando-Segura; Aurora Solier; Beatriz Cortes; Beatriz Mateos; Beatriz Nafria-Jimenez; Benedikt Schaefer; Bjoern Jensen; Carla Bellinghausen; Carlo Maj; Carlos Ferrando; Carmen de la Horrra; Carmen Quereda; Carsten Skurk; Charlotte Thibeault; Chiara Scollo; Christian Herr; Christoph D. Spinner; Christoph Lange; Cinzia Hu; Clara Lehmann; Claudio Cappadona; Clinton Azuure; - COVICAT study group; - Covid-19 Aachen Study (COVAS); Cristiana Bianco; Cristina Sancho; Dag Arne Lihaug Hoff; Daniela Galimberti; Daniele Prati; David Haschka; David Jimenez; David Pestana; David Toapanta; Elena Azzolini; Elio Scarpini; Elisa T. Helbig; Eloisa Urrechaga; Elvezia Maria Paraboschi; Emanuele Pontali; Enric Reverter; Enrique J. Calderon; Enrique Navas; Erik Solligard; Ernesto Contro; Eunate Arana; Federico Garcia; Felix Garcia Sanchez; Ferruccio Ceriotti; Filippo Martinelli-Boneschi; Flora Peyvandi; Florian Kurth; Francesco Blasi; Francesco Malvestiti; Francisco J. Medrano; Francisco Mesonero; Francisco Rodriguez-Frias; Frank Hanses; Fredrik Mueller; Giacomo Bellani; Giacomo Grasselli; Gianni Pezzoli; Giorgio Costantino; Giovanni Albano; Giuseppe Bellelli; Giuseppe Citerio; Giuseppe Foti; Giuseppe Lamorte; Holger Neb; Ilaria My; Ingo Kurth; Isabel Hernandez; Isabell Pink; Itziar de Rojas; Ivan Galvan-Femenia; Jan C. Holter; Jan Egil Egil Afset; Jan Heyckendorf; Jan Damas; Jan Kristian Rybniker; Janine Altmueller; Javier Ampuero; Jesus M. Banales; Joan Ramon Badia; Joaquin Dopazo; Jochen Schneider; Jonas Bergan; Jordi Barretina; Joern Walter; Jose Hernandez Quero; Josune Goikoetxea; Juan Delgado; Juan M. Guerrero; Julia Fazaal; Julia Kraft; Julia Schroeder; Kari Risnes; Karina Banasik; Karl Erik Mueller; Karoline I. Gaede; Koldo Garcia-Etxebarria; Kristian Tonby; Lars Heggelund; Laura Izquierdo-Sanchez; Laura Rachele Bettini; Lauro Sumoy; Leif Erik Sander; Lena J. Lippert; Leonardo Terranova; Lindokuhle Nkambule; Lisa Knopp; Lise Tuset Gustad; Lucia Garbarino; Luigi Santoro; Luis Tellez; Luisa Roade; Mahnoosh Ostadreza; Maider Intxausti; Manolis Kogevinas; Mar Riveiro-Barciela; Marc M. Berger; Mari E.K. Niemi; Maria A. Gutierrez-Stampa; Maria Grazia Valsecchi; Maria Hernandez-Tejero; Maria J.G.T. Vehreschild; Maria Manunta; Mariella D'Angio; Marina Cazzaniga; Marit M. Grimsrud; Markus Cornberg; Markus M. Noethen; Marta Marquie; Massimo Castoldi; Mattia Cordioli; Maurizio Cecconi; Mauro D'Amato; Max Augustin; Melissa Tomasi; Merce Boada; Michael Dreher; Michael J. Seilmaier; Michael Joannidis; Michael Wittig; Michela Mazzocco; Miguel Rodriguez-Gandia; Natale Imaz Ayo; Natalia Blay; Natalia Chueca; Nicola Montano; Nicole Ludwig; Nikolaus Marx; Nilda Martinez; - Norwegian SARS-CoV-2 Study group; Oliver A. Cornely; Oliver Witzke; Orazio Palmieri; - Pa COVID-19 Study Group; Paola Faverio; Paolo Bonfanti; Paolo Tentorio; Pedro Castro; Pedro M. Rodrigues; Pedro Pablo Espana; Per Hoffmann; Philip Rosenstiel; Philipp Schommers; Phillip Suwalski; Raul de Pablo; Ricard Ferrer; Robert Bals; Roberta Gualtierotti; Rocio Gallego-Duran; Rosa Nieto; Rossana Carpani; Ruben Morilla; Salvatore Badalamenti; Sammra Haider; Sandra Ciesek; Sandra May; Sara Bombace; Sara Marsal; Sara Pigazzini; Sebastian Klein; Selina Rolker; Serena Pelusi; Sibylle Wilfling; Silvano Bosari; Soren Brunak; Soumya Raychaudhuri; Stefan Schreiber; Stefanie Heilmann-Heimbach; Stefano Aliberti; Stephan Ripke; Susanne Dudman; - The Humanitas COVID-19 Task Forse; - The Humanitas Gavazzeni COVID-19 Task Force; Thomas Bahmer; Thomas Eggermann; Thomas Illig; Thorsten Brenner; Torsten Feldt; Trine Folseraas; Trinidad Gonzalez Cejudo; Ulf Landmesser; Ulrike Protzer; Ute Hehr; Valeria Rimoldi; Vegard Skogen; Verena Keitel; Verena Kopfnagel; Vicente Friaza; Victor Andrade; Victor Moreno; Wolfgang Poller; Xavier Farre; Xiaomin Wang; Yascha Khodamoradi; Zehra Karadeniz; Anna Latiano; Siegfried Goerg; Petra Bacher; Philipp Koehler; Florian Tran; Heinz Zoller; Eva C. Schulte; Bettina Heidecker; Kerstin U. Ludwig; Javier Fernandez; Manuel Romero-Gomez; Agustin Albillos; Pietro Invernizzi; Maria Buti; Stefano Duga; Luis Bujanda; Johannes R. Hov; Tobias L. Lenz; Rosanna Asselta; Rafael de Cid; Luca Valenti; Tom H. Karlsen; Mario Caceres; Andre Franke.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.21.21260624

ABSTRACT

Due to the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), deepening the host genetic contribution to severe COVID-19 may further improve our understanding about underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany, as well as hypothesis-driven targeted analysis of the human leukocyte antigen (HLA) region and chromosome Y haplotypes. We include detailed stratified analyses based on age, sex and disease severity. In addition to already established risk loci, our data identify and replicate two genome-wide significant loci at 17q21.31 and 19q13.33 associated with severe COVID-19 with respiratory failure. These associations implicate a highly pleiotropic ~0.9-Mb 17q21.31 inversion polymorphism, which affects lung function and immune and blood cell counts, and the NAPSA gene, involved in lung surfactant protein production, in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Respiratory Insufficiency
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.23.441188

ABSTRACT

INTRODUCTION: Hyperinflammation is frequently observed in patients with severe COVID-19. Inadequate and defective IFN type I responses against SARS-CoV-2, caused by autoantibodies in a proportion of patients, lead to severe courses. In addition, hyperactive responses of the humoral immune system have been described so far. RATIONALE: In the current study we investigated a possible role of neutralizing autoantibodies against anti-inflammatory mediators. Plasma from patients with severe and critical COVID-19 was screened by ELISA for antibodies against PGRN, IL-10, IL-18BP, IL-22BP and IL-1-RA. Autoantibodies were characterized and the antigens were analyzed for immunogenic alterations. RESULTS: PGRN-autoantibodies were detected with high titers in 11 of 30 (36.7%), and IL 1-RA-autoantibodies in 14 of 30 (46.7%) patients of a discovery cohort with severe to critical COVID-19. In a validation cohort of 41 patients with critical COVID-19 high-titered PGRN-Abs were detected in 12 (29.3%) and IL-1-RA-Abs in 19 of 41 patients (46.2%). PGRN-Abs and IL-1-RA-Abs belonged to IgM and several IgG subclasses. In separate cohorts with non-critical COVID-19, PGRN-Abs and IL-1-RA-Abs were detected significantly less frequently and at low titers. Neither PGRN- nor IL-1-RA-Abs were found in 40 healthy controls vaccinated against SARS-CoV-2. PGRN-Abs were not cross-reactive against SARS-CoV-2 structural proteins or against IL-1-RA. Plasma levels of both free PGRN and IL-1-RA were significantly decreased in autoantibody-positive patients compared to Ab-negative and non-COVID controls. Functionally, PGRN-Abs from patients reduced PGRN-dependent inhibition of TNF- signaling in vitro. The pSer81 hyperphosphorylated PGRN isoform was exclusively detected in patients with high-titer PGRN-Abs; likewise, a yet unidentified hyperphosphorylated IL-1-RA isoform was only found in patients with high-titer IL-1-RA-Abs. No autoantibodies against IL-10, IL-18BP or IL-22BP were found. CONCLUSION: To conclude, neutralizing autoantibodies to IL-1-RA and PGRN occur in a significant proportion of patients with critical COVID-19, with a concomitant decrease in circulating PGRN and IL-1-RA, which is indicative of a misdirected, proinflammatory autoimmune response. The break of self-tolerance is likely caused by atypical isoforms of both antigens due to hyperphosphorylation. It remains to be determined whether these secondary modifications are induced by the SARS-CoV-2-infection itself, or are preexisting and predispose for a critical course.


Subject(s)
Severe Acute Respiratory Syndrome , Frontotemporal Dementia , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.02.21252580

ABSTRACT

Rationale: The treatment options for COVID-19 patients are sparse and do not show sufficient efficacy. Alpha-1-antitrypsin (AAT) is a multi-functional host-defense protein with anti-proteolytic and anti-inflammatory activities. Objectives: The aim of the present study was to evaluate whether AAT is a suitable candidate for treatment of COVID-19. Methods: AAT and inflammatory markers were measured in the serum of COVID-19 patients. Human cell cultures were employed to determine the cell-based anti-protease activity of AAT and to test whether AAT inhibits the host cell entry of vesicular stomatitis virus (VSV) particles bearing the spike (S) protein of SARS-CoV-2 and the replication of authentic SARS-CoV-2. Inhaled and / or intravenous AAT was applied to nine patients with mild-to-moderate COVID-19. Measurements and Main Results: The serum AAT concentration in COVID-19 patients was increased as compared to control patients. The relative AAT concentrations were decreased in severe COVID-19 or in non-survivors in ratio to inflammatory blood biomarkers. AAT inhibited serine protease activity in human cell cultures, the uptake of VSV-S into airway cell lines and the replication of SARS-CoV-2 in human lung organoids. All patients, who received AAT, survived and showed decreasing respiratory distress, inflammatory markers, and viral load. Conclusion: AAT has anti-SARS-CoV-2 activity in human cell models, is well tolerated in patients with COVID-19 and together with its anti-inflammatory properties might be a good candidate for treatment of COVID-19.


Subject(s)
Vesicular Stomatitis , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL